English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurotrauma 2018-Jul

Traumatic Brain Injury Disrupts Pain Signaling in the Brainstem and Spinal Cord.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Karen-Amanda Irvine
Peyman Sahbaie
De-Yong Liang
J David Clark

Keywords

Abstract

Chronic pain is a common consequence of traumatic brain injury (TBI) that can increase the suffering of a patient and pose a significant challenge to rehabilitative efforts. Unfortunately, the mechanisms linking TBI to pain are poorly understood, and specific treatments for TBI-related pain are still lacking. Our laboratory has shown that TBI causes pain sensitization in areas distant to the site of primary injury, and that changes in spinal gene expression may underlie this sensitization. The aim of this study was to examine the roles that pain modulatory pathways descending from the brainstem play in pain after TBI. Deficiencies in one type of descending inhibition, diffuse noxious inhibitory control (DNIC), have been suggested to be responsible for the development of chronic pain by allowing excess and uncontrolled afferent nociceptive inputs. Here we expand our knowledge of pain after TBI in two ways: (1) by outlining the neuropathology in pain-related centers of the brain and spinal cord involved in DNIC using the rat lateral fluid percussion (LFP) model of TBI, and (2) by evaluating the effects of a potent histone acetyl transferase inhibitor, anacardic acid (AA), on LFP-induced pain behaviors and neuropathology when administered for several days after TBI. The results revealed that TBI induces transient mechanical allodynia and a chronic persistent loss of DNIC. Further, while short-term AA treatment can block acute nociceptive sensitization and some early neuropathological changes, this treatment neither prevented the loss of DNIC nor did it alter long-term neuropathological changes in the brain or spinal cord.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge