English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Physiology - Gastrointestinal and Liver Physiology 2004-May

Treatment of EFA deficiency with dietary triglycerides or phospholipids in a murine model of extrahepatic cholestasis.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Anniek Werner
Rick Havinga
Folkert Kuipers
Henkjan J Verkade

Keywords

Abstract

Essential fatty acid (EFA) deficiency during cholestasis is mainly due to malabsorption of dietary EFA (23). Theoretically, dietary phospholipids (PL) may have a higher bioavailability than dietary triglycerides (TG) during cholestasis. We developed murine models for EFA deficiency (EFAD) with and without extrahepatic cholestasis and compared the efficacy of oral supplementation of EFA as PL or as TG. EFAD was induced in mice by feeding a high-fat EFAD diet. After 3 wk on this diet, bile duct ligation was performed in a subgroup of mice to establish extrahepatic cholestasis. Cholestatic and noncholestatic EFAD mice continued on the EFAD diet (controls) or were supplemented for 3 wk with EFA-rich TG or EFA-rich PL. Fatty acid composition was determined in plasma, erythrocytes, liver, and brain. After 4 wk of EFAD diet, induction of EFAD was confirmed by a sixfold increased triene-to-tetraene ratio (T/T ratio) in erythrocytes of noncholestatic and cholestatic mice (P < 0.001). EFA-rich TG and EFA-rich PL were equally effective in preventing further increase of the erythrocyte T/T ratio, which was observed in cholestatic and noncholestatic nonsupplemented mice (12- and 16-fold the initial value, respectively). In cholestatic mice, EFA-rich PL was superior to EFA-rich TG in decreasing T/T ratios of liver TG and PL (each P < 0.05) and in increasing brain PL concentrations of the long-chain polyunsaturated fatty acids (LCPUFA) docosahexaenoic acid and arachidonic acid (each P < 0.05). We conclude that oral EFA supplementation in the form of PL is more effective than in the form of TG in increasing LCPUFA concentrations in liver and brain of cholestatic EFAD mice.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge