English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Science of the Total Environment 2018-Dec

Treatment of the textile industry effluent in a pilot-scale vertical flow constructed wetland system augmented with bacterial endophytes.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Zahid Hussain
Muhammad Arslan
Mumtaz Hasan Malik
Muhammad Mohsin
Samina Iqbal
Muhammad Afzal

Keywords

Abstract

A pilot-scale vertical flow constructed wetland (VFCWs) system was designed, implemented and operated for one year for the treatment of dye-rich real textile effluent. Brachiaria mutica was vegetated to develop VFCWs in which five different textile effluent degrading endophytic bacteria were inoculated. These bacteria were screened based on their dye degrading and plant growth promoting capabilities. The system's performance was evaluated by monitoring physicochemical parameters, nutrients removal, heavy metals reduction, detoxification potential, and persistence of endophytic bacteria in the plant rhizo- and endosphere. Although VFCWs were able to remove a majority of the pollutants from the wastewater, bacterial augmentation further enhanced the remediation efficiency. The system promoted an increase in dissolved oxygen up to 188% and, concomitantly, a substantial decrease in the chemical oxygen demand (81%), biochemical oxygen demand (72%), total dissolved solids (32%), color (74%), nitrogen (84%), phosphorous (79%), and heavy metals [Cr(97%), Fe(89%), Ni(88%), Cd(72%)] was recorded. Wastewater treated with VFCWs augmented with bacteria was found to be non-toxic and inoculated bacteria showed persistence in the root and shoot interior of B. mutica. Conclusively, VFCWs proved to be an effective methodology for treatment of textile effluent whereas its smaller size with high efficiency is an advantage for field-scale applications.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge