English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Pharmacology and Experimental Therapeutics 1999-Apr

Tretinoin prevents age-related renal changes and stimulates antioxidant defenses in cultured renal mesangial cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
V M Manzano
M R Puyol
D R Puyol
F J Cazaña

Keywords

Abstract

Age-related progressive glomerular sclerosis in the rat is associated with increased expression of tumor necrosis factor-beta1 and increased protein content in the renal cortex, enhanced production of H2O2, in both renal glomeruli and mesangial cells (MCs) cultured from them, as well as augmented glomerular oxidative damage. We have previously shown that tretinoin-treated old male Fischer 344 rats have 30% lower protein content in the renal cortex than control old rats. Here, we report that this effect may depend on the inhibition of the expression of tumor necrosis factor-beta1, a matrigenic cytokine, and osteopontin, a protein with cell adhesive and chemotactic properties. In addition, we show that tretinoin prevents the cytotoxicity of H2O2 in cultured human MCs by increasing both the catalase activity and the reduced glutathione content, which are dose- and time-dependent changes. These increases were not dependent on each other: when these effects were previously inhibited with 3-amino-1,2,4-atriazole or L-buthionine-(S, R)-sulfoximine, respectively, tretinoin still induced the increase of the other noninhibited antioxidant defense. An enhanced gene transcription is the most likely mechanism involved in the tretinoin-induced stimulation of MC antioxidant defense systems because 1) preincubation of MCs with actinomycin D or cycloheximide fully abolished it; 2) tretinoin-incubated MCs showed increased levels of catalase mRNA and gamma-glutamyl-cysteine synthetase (catalytic subunit) mRNA, the latter being the rate-limiting step in de novo reduced glutathione synthesis; and 3) the stability of both mRNA was unchanged by tretinoin. These results show one strategy of protecting renal cells from H2O2-mediated injury based on increasing their antioxidant defenses.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge