English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Tree Physiology 2008-Nov

Triazole induced drought tolerance in horse chestnut (Aesculus hippocastanum).

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Glynn C Percival
Kelly Noviss

Keywords

Abstract

We determined the influence of the triazole derivatives paclobutrazol, penconazole, epixiconazole, propiconazole and myclobutanil on the drought tolerance and post drought recovery of container-grown horse chestnut (Aesculus hippocastanum L.) saplings. Myclobutanil neither conferred drought resistance, as assessed by its effects on a number of physiological and biochemical parameters, nor affected growth parameters measured after recovery from drought. Chlorophyll fluorescence (F(v)/F(m)), photosynthetic rates, total foliar chlorophyll and carotenoid concentrations, foliar proline concentration and superoxide dismutase and catalase activities were consistently higher and leaf necrosis and cellular electrolyte leakage was lower at the end of a 3-week drought in trees treated with paclobutrazol, penconazole, epixiconazole or propiconazole than in control trees. Twelve weeks after drought treatment, leaf area and shoot, root and total plant dry masses were greater in triazole-treated trees than in control trees with the exception of those treated with myclobutanil. In a separate study, trees were subjected to a 2-week drought and then sprayed with paclobutrazol, penconazole, epixiconazole, propiconazole or myclobutanil. Chlorophyll fluorescence, photosynthetic rate, foliar chlorophyll concentration and catalase activity over the following 12 weeks were 20 to 50% higher in triazole-treated trees than in control trees. At the end of the 12-week recovery period, leaf area and shoot, root and total plant dry masses were higher in triazole-treated trees than in control trees, with the exception of trees treated with myclobutanil. Application of triazole derivatives, with the exception of myclobutanil, enhanced tolerance to prolonged drought and, when applied after a 2-week drought, hastened recovery from drought. The magnitude of treatment effects was in the order epixiconazole approximately propiconazole > penconazole > paclobutrazol > myclobutanil.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge