English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Small 2015-May

Trifolium-like Platinum Nanoparticle-Mediated Photothermal Therapy Inhibits Tumor Growth and Osteolysis in a Bone Metastasis Model.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Changping Wang
Xiaopan Cai
Jishen Zhang
Xinyu Wang
Yu Wang
Huyifeng Ge
Wangjun Yan
Quan Huang
Jianru Xiao
Qiang Zhang

Keywords

Abstract

Bone metastasis is a frequent and fatal complication of cancer that lacks effective clinical treatment. Photothermal therapy represents a new strategy for the destruction of multiple cancers. In this study, trifolium-like platinum nanoparticles (TPNs) with small size and excellent photothermal conversion property are prepared via a facile and green method. TPNs show minimal cytotoxicity on normal cell lines and kill cancer cells upon exposure to a near-infrared light. These nanoparticles effectively inhibit tumor growth and prevent osteolysis in a bone metastasis model. This study offers a promising strategy in the treatment of bone metastasis.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge