English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Acta Pharmacologica Sinica 2016-Aug

Trimer procyanidin oligomers contribute to the protective effects of cinnamon extracts on pancreatic β-cells in vitro.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Peng Sun
Ting Wang
Lu Chen
Bang-Wei Yu
Qi Jia
Kai-Xian Chen
Hui-Min Fan
Yi-Ming Li
He-Yao Wang

Keywords

Abstract

OBJECTIVE

Cinnamon extracts rich in procyanidin oligomers have shown to improve pancreatic β-cell function in diabetic db/db mice. The aim of this study was to identify the active compounds in extracts from two species of cinnamon responsible for the pancreatic β-cell protection in vitro.

METHODS

Cinnamon extracts were prepared from Cinnamomum tamala (CT-E) and Cinnamomum cassia (CC-E). Six compounds procyanidin B2 (cpd1), (-)-epicatechin (cpd2), cinnamtannin B1 (cpd3), procyanidin C1 (cpd4), parameritannin A1 (cpd5) and cinnamtannin D1 (cpd6) were isolated from the extracts. INS-1 pancreatic β-cells were exposed to palmitic acid (PA) or H2O2 to induce lipotoxicity and oxidative stress. Cell viability and apoptosis as well as ROS levels were assessed. Glucose-stimulated insulin secretion was examined in PA-treated β-cells and murine islets.

RESULTS

CT-E, CC-E as well as the compounds, except cpd5, did not cause cytotoxicity in the β-cells up to the maximum dosage using in this experiment. CT-E and CC-E (12.5-50 μg/mL) dose-dependently increased cell viability in both PA- and H2O2-treated β-cells, and decreased ROS accumulation in H2O2-treated β-cells. CT-E caused more prominent β-cell protection than CC-E. Furthermore, CT-E (25 and 50 μg/mL) dose-dependently increased glucose-stimulated insulin secretion in PA-treated β-cells and murine islets, but CC-E had little effect. Among the 6 compounds, trimer procyanidins cpd3, cpd4 and cpd6 (12.5-50 μmol/L) dose-dependently increased the cell viability and decreased ROS accumulation in H2O2-treated β-cells. The trimer procyanidins also increased glucose-stimulated insulin secretion in PA-treated β-cells.

CONCLUSIONS

Trimer procyanidins in the cinnamon extracts contribute to the pancreatic β-cell protection, thus to the anti-diabetic activity.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge