English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Molecular Medicine 2018-Oct

Tumor necrosis factor (TNF) modulates synaptic plasticity in a concentration-dependent manner through intracellular calcium stores.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Nicola Maggio
Andreas Vlachos

Keywords

Abstract

The role of inflammatory signaling pathways in synaptic plasticity has long been identified. Yet, it remains unclear how inflammatory cytokines assert their pleiotropic effects on neural plasticity. Moreover, the neuronal targets through which inflammatory cytokines assert their effects on plasticity remain not well-understood. In an attempt to learn more about the plasticity-modulating effects of the pro-inflammatory cytokine tumor necrosis factor (TNF), we used two-pathway long-term potentiation (LTP) experiments at Schaffer collateral-CA1 synapses to test for concentration-dependent effects of TNF on synaptic plasticity. We report that high concentrations of TNF (1 μg/mL) impair the ability of mouse CA1 pyramidal neurons to express synaptic plasticity without affecting baseline synaptic transmission and/or previously established LTP. Interestingly, 100 ng/mL of TNF has no apparent effect on LTP, while low concentrations (1 ng/mL) promote the ability of neurons to express LTP. These dose-dependent metaplastic effects of TNF are modulated by intracellular calcium stores: Pharmacological activation of intracellular calcium stores with ryanodine (10 μM) reverses the negative effects of TNF[high], and the plasticity-promoting effects of TNF[low] are blocked when intracellular calcium stores are depleted with thapsigargin (1 μM). Consistent with this result, TNF does not promote plasticity in synaptopodin-deficient preparations, which show deficits in neuronal calcium store-mediated synaptic plasticity. Thus, we propose that TNF mediates its pleiotropic effects on synaptic plasticity in a concentration-dependent manner through signaling pathways that are modulated by intracellular calcium stores and require the presence of synaptopodin. These results demonstrate that TNF can act as mediator of metaplasticity, which is of considerable relevance in the context of brain diseases associated with increased TNF levels and alterations in synaptic plasticity.

UNASSIGNED

• TNF modulates the ability of neurons to express synaptic plasticity. • High concentrations of TNF impair synaptic plasticity. • Low concentrations of TNF improve synaptic plasticity. • TNF does not affect previously established long-term potentiation. • Plasticity effects of TNF are modulated by intracellular calcium stores.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge