English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of the American Heart Association 2014-Aug

Tumor necrosis factor-like weak inducer of apoptosis or Fn14 deficiency reduce elastase perfusion-induced aortic abdominal aneurysm in mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Carlos Tarín
Valvanera Fernández-Laso
Cristina Sastre
Julio Madrigal-Matute
Mónica Gómez
Carlos Zaragoza
Jesús Egido
Linda C Burkly
Jose L Martín-Ventura
Luis M Blanco-Colio

Keywords

Abstract

BACKGROUND

Abdominal aortic aneurysm (AAA) involves leukocyte recruitment, inflammatory cytokine production, vascular cell apoptosis, neovascularization, and vascular remodeling, all of which contribute to aortic dilatation. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a cytokine implicated in proinflammatory responses, angiogenesis, and matrix degradation but its role in AAA formation is currently unknown.

RESULTS

Experimental AAA with aortic elastase perfusion in mice was induced in wild-type (WT), TWEAK deficient (TWEAK KO), or Fn14-deficient (Fn14 KO) mice. TWEAK or Fn14 KO deficiency reduced aortic expansion, lesion macrophages, CD3(+) T cells, neutrophils, CD31(+) microvessels, CCL2 and CCL5 chemokines expression, and MMP activity after 14 days postperfusion. TWEAK and Fn14 KO mice also showed a reduced loss of medial vascular smooth muscle cells (VSMC) that was related to a reduced number of apoptotic cells in these animals compared with WT mice. Aortas from WT animals present a higher disruption of the elastic layer and MMP activity than those from TWEAK or Fn14 KO mice, indicating a diminished vascular remodeling in KO animals. In vitro experiments unveiled that TWEAK induces CCL5 secretion and MMP-9 activation in both VSMC and bone marrow-derived macrophages, and decrease VSMC viability, effects dependent on Fn14.

CONCLUSIONS

TWEAK/Fn14 axis participates in AAA formation by promoting lesion inflammatory cell accumulation, angiogenesis, matrix-degrading protease expression, and vascular remodeling. Blocking TWEAK/Fn14 interaction could be a new target for the treatment of AAA.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge