English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of the American Chemical Society 2003-Jan

Tuning copper-dioxygen reactivity and exogenous substrate oxidations via alterations in ligand electronics.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Christiana Xin Zhang
Hong-Chang Liang
Eun-Il Kim
Jason Shearer
Matthew E Helton
Eunsuk Kim
Susan Kaderli
Christopher D Incarvito
Andreas D Zuberbühler
Arnold L Rheingold

Keywords

Abstract

Copper(I)-dioxygen adducts are important in biological and industrial processes. For the first time we explore the relationship between ligand electronics, CuI-O2 adduct formation and exogenous substrate reactivity. The copper(I) complexes [CuI(R-MePY2)]+ (1R, where R = Cl, H, MeO, Me2N) were prepared; where R-MePY2 are 4-pyridyl substituted bis[2-(2-pyridyl)ethyl]methylamine chelates. Both the redox potential of 1R (ranging from E1/2 = -270 mV for 1Cl to -440 mV for 1MeN vs FeCp2/FeCp2+) and nuCO of the CO adducts of 1R (ranging from 2093 cm-1 for 1Cl-CO to 2075 cm-1 for 1Me2N-CO) display modest but expected systematic shifts. Dioxygen readily reacts with 1H, 1MeO, and 1Me2N, forming the side-on peroxo-CuII2 complexes [{CuII(R-MePY2)}2(O2)]2+ (2R, also containing some bis-mu-oxo-CuIII2 isomer), but there is no reaction with 1Cl. Stopped-flow studies in dichloromethane show that the formation of 2Me2N from dioxygen and 1Me2N proceeds with a k = 8.2(6) x 104 M-2 s-1 (183 K, DeltaH = -20.3(6) kJ mol-1, DeltaS = -219(3) J mol-1 K-1). Solutions of 2R readily oxidize exogenous substrates (9,10-dihydroanthracene --> anthracene, tetrahydrofuran (THF) --> 2-hydroxytetrahydrofuran (THF-OH), N,N-dimethylaniline --> N-methylaniline and formaldehyde, benzyl alcohol --> benzaldehyde, benzhydrol --> benzophenone, and methanol --> formaldehyde), forming the bis-mu-hydroxo-CuII2 complexes [{CuII(R-MePY2)(OH)}2]2+ (3R). Product yields increase as the R-group is made more electron-donating, and in some cases are quantitative with 2Me2N. Pseudo-first-order rate constants for THF and methanol oxidation reactions demonstrate a remarkable R-group dependence, again favoring the strongest ligand donor (i.e., R = Me2N). For THF oxidation to THF-OH a nearly 1500-fold increase in reaction rate is observed (kobs = 2(1) x 10-5 s-1 for 2H to 3(1) x 10-2 s-1 for 2Me2N), while methanol oxidation to formaldehyde exhibits an approximately 2000-fold increase (kobs = 5(1) x 10-5 s-1 for 2H to 1(1) x 10-1 s-1 for 2Me2N).

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge