English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Applied and Environmental Microbiology 2008-Mar

Two different tetracycline resistance mechanisms, plasmid-carried tet(L) and chromosomally located transposon-associated tet(M), coexist in Lactobacillus sakei Rits 9.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Mohammed Salim Ammor
Miguel Gueimonde
Morten Danielsen
Monique Zagorec
Angela H A M van Hoek
Clara G de Los Reyes-Gavilán
Baltasar Mayo
Abelardo Margolles

Keywords

Abstract

Lactobacillus sakei is extensively used as functional starter culture in fermented meat products. One of the safety criteria of a starter culture is the absence of potentially transferable antibiotic resistance determinants. However, tetracycline-resistant L. sakei strains have already been observed. In this paper, we show that tetracycline resistance in L. sakei Rits 9, a strain isolated from Italian Sola cheese made from raw milk, is mediated by a transposon-associated tet(M) gene coding for a ribosomal protection protein and a plasmid-carried tet(L) gene coding for a tetracycline efflux pump. pLS55, the 5-kb plasmid carrying the tet(L) gene, is highly similar to the pMA67 plasmid recently described for Paenibacillus larvae, a species pathogenic to honeybees. pLS55 could be transferred by electroporation into the laboratory strain L. sakei 23K. While the L. sakei 23K transformant containing pLS55 displayed an intermediate tetracycline resistance level (MIC, <32 microg/ml), L. sakei Rits 9, containing both tetracycline-resistant determinants, had a MIC of <256 microg/ml, suggesting that Tet L and Tet M confer different levels of resistance in L. sakei. Remarkably, in the absence of tetracycline, a basal expression of both genes was detected for L. sakei Rits 9. In addition, subinhibitory concentrations of tetracycline affected the expression patterns of tet(M) and tet(L) in different ways: the expression of tet(M) was induced only at high tetracycline concentrations, whereas the expression of tet(L) was up-regulated at lower concentrations. This is the first time that two different mechanisms conferring resistance to tetracycline are characterized for the same strain of a lactic acid bacterium.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge