English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Applied and Environmental Microbiology 2014-Aug

Uptake and metabolism of N-acetylglucosamine and glucosamine by Streptococcus mutans.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Zachary D Moye
Robert A Burne
Lin Zeng

Keywords

Abstract

Glucosamine and N-acetylglucosamine are among the most abundant sugars on the planet, and their introduction into the oral cavity via the diet and host secretions, and through bacterial biosynthesis, provides oral biofilm bacteria with a source of carbon, nitrogen, and energy. In this study, we demonstrated that the dental caries pathogen Streptococcus mutans possesses an inducible system for the metabolism of N-acetylglucosamine and glucosamine. These amino sugars are transported by the phosphoenolpyruvate:sugar phosphotransferase system (PTS), with the glucose/mannose enzyme II permease encoded by manLMN playing a dominant role. Additionally, a previously uncharacterized gene product encoded downstream of the manLMN operon, ManO, was shown to influence the efficiency of uptake and growth on N-acetylglucosamine and, to a lesser extent, glucosamine. A transcriptional regulator, designated NagR, was able to bind the promoter regions in vitro, and repress the expression in vivo, of the nagA and nagB genes, encoding N-acetylglucosamine-6-phosphate deacetylase and glucosamine-6-phosphate deaminase, respectively. The binding activity of NagR could be inhibited by glucosamine-6-phosphate in vitro. Importantly, in contrast to the case with certain other Firmicutes, the gene for de novo synthesis of glucosamine-6-phosphate in S. mutans, glmS, was also shown to be regulated by NagR, and NagR could bind the glmS promoter region in vitro. Finally, metabolism of these amino sugars by S. mutans resulted in the production of significant quantities of ammonia, which can neutralize cytoplasmic pH and increase acid tolerance, thus contributing to enhanced persistence and pathogenic potential.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge