English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Electrophoresis 2018-May

Uptake and metabolism of the antidepressants sertraline, clomipramine, and trazodone in a garden cress (Lepidium sativum) model.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Bernd Reichl
Markus Himmelsbach
Lisa Emhofer
Christian W Klampfl
Wolfgang Buchberger

Keywords

Abstract

Environmental contamination with pharmaceuticals has received growing attention in recent years. Several studies describe the presence of traces of drugs in water bodies and soils and their impacts on nontarget organisms including plants. Due to these facts investigations of the uptake and metabolism of pharmaceuticals in organisms is an emerging research area. The present study demonstrates the analysis of three selected antidepressants (sertraline, clomipramine, and trazodone) as well as metabolites and transformation products in a cress model (Lepidium sativum). Cress was treated with tap water containing 10 mg/L of the parent drugs. Employing an analytical approach based on high performance liquid chromatography coupled with quadrupole time of flight or Orbitrap mass spectrometry in MS and MS² modes, in total 14 substances were identified in the cress extracts. All three parent drugs were taken up by the cress and translocated from the roots to the leaves in specific patterns. In addition to this, eleven metabolite species were identified. They were generated by hydroxylation, demethylation, conjugation with amino acids, or combinations of these mechanisms. Finally, the inclusion of control cultures in the experimental setup allowed for a differentiation of "true" metabolites generated by the cress and transformation products generated by plant-independent mechanisms.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge