English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pflugers Archiv European Journal of Physiology 2015-Mar

Urinary serine proteases and activation of ENaC in kidney--implications for physiological renal salt handling and hypertensive disorders with albuminuria.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Per Svenningsen
Henrik Andersen
Lise H Nielsen
Boye L Jensen

Keywords

Abstract

Serine proteases, both soluble and cell-attached, can activate the epithelial sodium channel (ENaC) proteolytically through release of a putative 43-mer inhibitory tract from the ectodomain of the γ-subunit. ENaC controls renal Na(+) excretion and loss-of-function mutations lead to low blood pressure, while gain-of-function mutations lead to impaired Na(+) excretion, hypertension, and hypokalemia. We review an emerging pathophysiological concept that aberrant glomerular filtration of plasma proteases, e.g., plasmin, prostasin, and kallikrein, contributes to proteolytic activation of ENaC, both in acute conditions with proteinuria, like nephrotic syndrome and preeclampsia, and in chronic diseases, such as diabetes with microalbuminuria. A vast literature on renin-angiotensin-aldosterone system and volume homeostasis from the last four decades show a number of common characteristics for conditions with albuminuria compatible with impaired renal Na(+) excretion: hypertension and volume retention is secondary to proteinuria in, e.g., preeclampsia and nephrotic syndrome; plasma concentrations of renin, angiotensin II, and aldosterone are frequently suppressed in proteinuric conditions, e.g., preeclampsia and diabetic nephropathy; blood pressure is salt-sensitive in conditions with microalbuminuria/proteinuria; and extracellular volume is expanded, plasma atrial natriuretic peptide (ANP) concentration is increased, and diuretics, like amiloride and spironolactone, are effective blood pressure-reducing add-ons. Active plasmin in urine has been demonstrated in diabetes, preeclampsia, and nephrosis. Urine from these patients activates, plasmin-dependently, amiloride-sensitive inward current in vitro. The concept predicts that patients with albuminuria may benefit particularly from reduced salt intake with RAS blockers; that distally acting diuretics, in particular amiloride, are warranted in low-renin/albuminuric conditions; and that urine serine proteases and their activators may be pharmacological targets.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge