English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of the National Cancer Institute 1992-Feb

Use of fluorine-19 nuclear magnetic resonance spectroscopy and hydralazine for measuring dynamic changes in blood perfusion volume in tumors in mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
C Thomas
C Counsell
P Wood
G E Adams

Keywords

Abstract

BACKGROUND

One method of evaluating the mechanism of action of agents which alter tumor oxygenation is to determine their effects on tumor blood flow.

OBJECTIVE

This study tests applicability of a new approach using an emulsion of the inert fluorocarbon perfluorooctylbromide (PFOB) at nontoxic doses as a tracer in fluorine-19 (19F) nuclear magnetic resonance (NMR) spectroscopy to evaluate dynamic changes in vascular perfusion volume in transplanted tumors.

METHODS

The PFOB emulsion (100% wt/vol) was injected into the tail vein in tumor-bearing C3H/He or nu/nu mice immobilized in a magnet interfaced to a spectrometer, either as a single bolus injection of 8 mL/kg body weight or in multiple injections to a total dose of 24 mL/kg. A 7-mm external surface coil was placed over the tumor. Signal from the PFOB in the tumor volume seen by the coil rapidly reached equilibrium and was maintained for at least 2 hours, and multiple doses of PFOB emulsion resulted in a linear increase in 19F signal strength. Since the 19F signal strength was directly proportional to the perfusion volume of the tumor vasculature, reduction of signal intensity should correspond directly to any reduction in volume caused by a change in the tumor blood flow. To investigate this hypothesis, the vasoactive agent hydralazine (5 mg/kg) was injected intravenously after administering the PFOB emulsion to induce changes in tumor blood supply. KHT and RIF-1 murine sarcomas, the HT29 human colon carcinoma, and the HX118 human melanoma tumors were studied. In a comparative analysis of changes in blood flow induced by hydralazine, we studied Xe-133 clearance in KHT murine sarcoma and SCCVII/Ha (SCCVII) murine squamous cell carcinoma.

RESULTS

Hydralazine significantly reduced the 19F signal intensity in the murine tumors RIF-1 and KHT and in the HT29 human tumor, with little reduction in the SCCVII/Ha murine and HX118 human tumors. Hydralazine induced a statistically significant 64% decrease in mean clearance rate in the KHT tumor, while SCCVII/Ha tumors showed no significant change, indicating that hydralazine restricted blood flow to a greater extent in the tumor type that showed reduced 19F signal from the PFOB emulsion.

CONCLUSIONS

These data demonstrate the potential of PFOB emulsion as a tracer in NMR spectroscopy for studying tumor vasculature.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge