English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemistry and Biodiversity 2013-Sep

Variability of the root essential oils of Seseli rigidum Waldst. & Kit. (Apiaceae) from different populations in Serbia.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Mirjana D Marčetić
Branislava S Lakušić
Dmitar V Lakušić
Nada N Kovačević

Keywords

Abstract

The chemical compositions of the essential oils of seven natural populations of Seseli rigidum were analyzed. The essential-oil yield ranged from 0.16 to 2.09%. Analysis of variance (ANOVA) revealed that there were no statistically significant differences in the mean essential-oil yields between the populations, and no significant influence of the climate or soil type on the oil yield was observed. In all 67 analyzed samples, the polyacetylene falcarinol was the main compound, followed by octanal, methyl linoleate, α-muurolene, 3-butylphthalide, falcarinone, muurola-4,10(14)-dien-1β-ol, β-sesquiphellandrene, salvial-4(14)-en-1-one, δ-amorphene, spathulenol, and isospathulenol. The principal component analysis (PCA), the canonical discriminant analysis (CDA), and the cluster analysis (CA) revealed differentiation between the populations based on the climate. Three groups of populations were formed; the first group was composed of samples growing in regions with a humid climate, with oils having high falcarinol and low sesquiterpene contents, and the second and third groups comprised samples exposed to semi-arid climate, with oils characterized by a lower falcarinol and higher α-muurolene, δ-amorphene, β-sesquiphellandrene, and salvial-4(14)-en-1-one contents. The semi-arid populations were divided into two groups, which were distinguished based on the oil contents of sesquiterpenes, falcarinone, and 3-butylphthalide. On the other hand, no clear separation between populations based on the different soil types could be observed.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge