English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Virology 1997-Jan

Varicella-zoster virus Fc receptor gE glycoprotein: serine/threonine and tyrosine phosphorylation of monomeric and dimeric forms.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J K Olson
G A Bishop
C Grose

Keywords

Abstract

Varicella-zoster virus (VZV) glycoprotein gE is the predominant viral cell surface molecule; it behaves as an Fc receptor for immunoglobulin G, but its central function may be more closely related to viral egress and cell-to-cell spread. To further analyze the receptor properties of VZV gE, the gE gene (also called open reading frame 68) was expressed by a baculovirus vector in insect cells. The recombinant baculovirus gE product had a molecular mass of 64 kDa, smaller than the previously documented 98 kDa of mature gE expressed in mammalian cells. The major reason for the lowered molecular mass was diminished glycosylation. In addition to the 64-kDa form, a larger (130-kDa) form was observed in insect cells and represented dimerized 64-kDa molecules. Both the monomeric and dimeric gE forms were highly phosphorylated in insect cells. Protein kinase assays conducted in vitro with [gamma-32P]ATP and [gamma-32P]GTP indicated that endogenous casein kinase II was phosphorylating monomeric gE, while the dimeric gE form was phosphorylated by another kinase which did not utilize [gamma-32P]GTP. When immobilized recombinant gE molecules were probed with a monoclonal antibody which specifically recognizes a phosphotyrosine linkage, the gE dimer was found to be tyrosine phosphorylated whereas the monomer was not similarly modified. When recombinant gE produced in HeLa cells was probed with the same antiphosphotyrosine antibody, a dimeric gE form at 130 kDa was detected on the cell surface. These results suggested that VZV gE closely resembled other cell surface receptors, being modified on its various forms by both serine/threonine and tyrosine protein kinases. In this case, tyrosine phosphorylation occurred on a previously unrecognized and underglycosylated VZV gE dimeric product.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge