English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Naunyn-Schmiedeberg's Archives of Pharmacology 2004-May

Vascular effects of Siberian ginseng (Eleutherococcus senticosus): endothelium-dependent NO- and EDHF-mediated relaxation depending on vessel size.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Chiu-Yin Kwan
Wen-Bo Zhang
Si-Mui Sim
Takeshi Deyama
Sansei Nishibe

Keywords

Abstract

Siberian ginseng (SG) has been widely and historically consumed as a health food product for the improvement of self well-being, but whether vascular relaxation may contribute to such a therapeutic health effect has not been studied. We therefore investigated the vasorelaxant effect of the aqueous extract of the roots of SG (Eleutherococcus senticosus Maxim) using several in vitro vascular rings prepared from dog carotid artery, rat aorta and rat mesenteric artery. SG extract (0.04-0.8 mg/ml) caused concentration-dependent relaxation in dog carotid arterial rings pre-contracted with 100 microM phenylephrine (PE), and the relaxation was primarily endothelium-dependent. Treatment with 100 microM L-NOARG (a nitric oxide synthase inhibitor) either prevented or totally reverted SG-induced relaxation, suggesting that the endothelium-dependent relaxation was mediated by NO. Similar endothelium-dependent vascular relaxant responses were also obtained with rat aortic and mesenteric arterial rings, except that it occurred over a relatively higher concentration range of SG (0.5-2.0 mg/ml). When tested in the presence of 300 microM L-NAME, the vasorelaxant effect of SG was inhibited totally in rat aorta but only partially in rat mesenteric artery. The relaxation to SG that was insensitive to L-NAME in rat mesenteric arterial rings was eliminated when the rings (both proximal and distal ends) were pre-treated with a combination of 300 microM L-NAME and 15 mM KCl indicating the involvement of endothelium-derived hyperpolarizing factor (EDHF). This vasorelaxant response of the SG extract was inhibited partially by atropine (1 microM), completely by TEA (5 mM), but not by indomethacin (1 microM) or propranolol (10 microM). SG up to 2 mg/ml had no effect on KCl-induced contraction in any of the vascular rings studied. When compared with carbachol-induced (CCh) relaxation, SG resembles CCh in that the sensitivity to L-NAME inhibition is dependent on vascular size, i.e. aorta >proximal end of mesenteric artery >distal end of mesenteric artery. However, SG exhibited different potencies to relaxation while CCh showed similar potency (EC(50) of about 0.2 microM) in all three vascular segments. In conclusion, we have demonstrated that the vascular effect of SG is endothelium-dependent and mediated by NO and/or EDHF depending on the vessel size. Other vasorelaxation pathways, such as inhibition of K(+)-channels and activation of muscarinic receptors, may also be involved.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge