English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neuroscience 2000-May

Vasoactive intestinal peptide and pituitary adenylyl cyclase-activating polypeptide inhibit tumor necrosis factor-alpha production in injured spinal cord and in activated microglia via a cAMP-dependent pathway.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
W K Kim
Y Kan
D Ganea
R P Hart
I Gozes
G M Jonakait

Keywords

Abstract

Tumor necrosis factor-alpha (TNF-alpha) production accompanies CNS insults of all kinds. Because the neuropeptide vasoactive intestinal peptide (VIP) and the structurally related peptide pituitary adenylyl cyclase-activating polypeptide (PACAP) have potent anti-inflammatory effects in the periphery, we investigated whether these effects extend to the CNS. TNF-alpha mRNA was induced within 2 hr after rat spinal cord transection, and its upregulation was suppressed by a synthetic VIP receptor agonist. Cultured rat microglia were used to examine the mechanisms underlying this inhibition because microglia are the likely source of TNF-alpha in injured CNS. In culture, increases in TNF-alpha mRNA resulting from lipopolysaccharide (LPS) stimulation were reduced significantly by 10(-7) m VIP and completely eliminated by PACAP at the same concentration. TNF-alpha protein levels were reduced 90% by VIP or PACAP at 10(-7) m. An antagonist of VPAC(1) receptors blocked the action of VIP and PACAP, and a PAC(1) antagonist blocked the action of PACAP. A direct demonstration of VIP binding on microglia and the existence of mRNAs for VPAC(1) and PAC(1) (but not VPAC(2)) receptors argue for a receptor-mediated effect. The action of VIP is cAMP-mediated because (1) activation of cAMP by forskolin mimics the action; (2) PKA inhibition by H89 reverses the neuropeptide-induced inhibition; and (3) the lipophilic neuropeptide mimic, stearyl-norleucine(17) VIP (SNV), which does not use a cAMP-mediated pathway, fails to duplicate the inhibition. We conclude that VIP and PACAP inhibit the production of TNF-alpha from activated microglia by a cAMP-dependent pathway.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge