English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biomolecular Structure and Dynamics 2017-Oct

Virtual identification of novel PPARα/γ dual agonists by scaffold hopping of saroglitazar.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Wen-Qing Jia
Zhi Jing
Xin Liu
Xiao-Yan Feng
Ya-Ya Liu
Shu-Qing Wang
Wei-Ren Xu
Jian-Wen Liu
Xian-Chao Cheng

Keywords

Abstract

The thiazolidinedione class PPARγ agonists as antidiabetic agents are restricted in clinical use because of the side effects such as edema, weight gain, and heart failure. The single and selective agonism of PPARγ is the main cause of side effects. The multi-target cooperative PPARα/γ dual agonist development is a hot topic in the antidiabetic medicinal chemistry field. Saroglitazar is the first approved PPARα/γ dual agonist, available in India for the treatment of diabetic dyslipidemia. It got rid of these side effects. With the aim of finding more protent PPARα/γ dual agonists, the scaffold hopping was used to replace α-o phenylpropionic acid skeleton of saroglitazar with L-tyrosine skeleton. Then, the structural modification was carried out designing 72 compounds. Considering the importance of chirality, opposite configuration of 72 compounds was also studied. 12 compounds with better -cdocker energy were screened by molecular docking. Subsequently, the pharmacokinetic properties and toxicity evaluated by ADMET prediction, 11 of them showed better properties. Comp#L-17-1 and comp#L-3-1 were regarded as representatives to study the binding stability by molecular dynamics (MD) simulations. The MD simulation results of comp#L-17-1-PPARs (α, γ) and comp#L-3-1-PPARs (α, γ) provided structure reference for the research and development of novel PPARα/γ dual agonists.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge