English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physiology and Behavior 2011-Sep

Weight bearing evaluation in inflammatory, neuropathic and cancer chronic pain in freely moving rats.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Pascal Tétreault
Marc-André Dansereau
Louis Doré-Savard
Nicolas Beaudet
Philippe Sarret

Keywords

Abstract

Preclinical pain assessment remains a key step for the development of new and potent painkillers. Significant progress in pain evaluation has been achieved with the development of non-reflexive tools. Seeking efficient and clinically relevant devices for pain-related quality of life assessment, we evaluated a new Dynamic Weight Bearing (DWB) device based on pressure captors in three different preclinical chronic pain models. Inflammatory (CFA), neuropathic (CCI) and bone cancer pain (femoral tumor) models were evaluated in Sprague Dawley rats for mechanical allodynia using dynamic von Frey for pain-related behaviors and DWB for discomfort. We observed similar impairment patterns in all of the models for both von Frey (allodynia) and DWB (weight balance) during the complete observation period, starting at day 3 in CCI- and CFA-affected limbs and at day 14 in bone cancer-afflicted rats, indicating that the DWB could be a useful tool for supporting pain assessment. Interestingly, we demonstrated that the main compensation, when animals experienced pain, was seen in the forepaws, ranging from 46% to 69% of increased load compared to normal. Other pain-related coping behaviors were also measured, such as the time spent on each paw and the contact surface. Our results revealed that CFA, CCI and cancerous rats decreased the use of their ipsilateral hind paws by 30% and showed a 50% reduction in paw surface pressed against the floor. In conclusion, this new device improves methods for preclinical evaluation of discomfort and quality of life proxies and could be helpful in screening putative analgesics.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge