English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Proceedings of the National Academy of Sciences of the United States of America 1989-May

Wheat tetrameric inhibitors of insect alpha-amylases: Alloploid heterosis at the molecular level.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
L Gomez
R Sanchez-Monge
F Garcia-Olmedo
G Salcedo

Keywords

Abstract

Tetrameric inhibitors of heterologous alpha-amylases have been characterized in allohexaploid wheat, Triticum aestivum (genomes AABBDD), as well as in Triticum turgidum (AABB) and Triticum tauschii (DD). Their subunits have been identified as the previously described CM proteins. Single oligomeric species were observed in T. Turgidum (subunits CM2, CM3A, and CM16) and in T. tauschii (CM1, CM3D, and CM17) by a two-dimensional electrophoretic method that does not dissociate the inhibitors in the first dimension. Multiple tetrameric species, resulting from different combinations of the subunits contributed by the two ancestral species, are observed by the same procedure in T. aestivum. The three types of subunits were required for significant activity when the inhibitor of T. turgidum was reconstituted from the purified subunits, whereas, in the case of T. tauschii, binary mixtures involving subunit CM1 also had some activity. Additional combinations of the subunits present in these two species, which occur in the allohexaploid T. aestivum, were also reconstituted, and their inhibitory activities ranged from 144% to 33% the activity of the reconstituted inhibitor from T. tauschii. The activity of these inhibitors toward the alpha-amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1) of the insect Tenebrio molitor is much greater than that against the salivary enzyme. These observations, together with the previously established chromosomal locations of genes encoding CM proteins, fit a model of alloploid heterosis at the molecular level.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge