English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Plant Physiology 2016-Feb

Wounding induces changes in cytokinin and auxin content in potato tuber, but does not induce formation of gibberellins.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Edward C Lulai
Jeffrey C Suttle
Linda L Olson
Jonathan D Neubauer
Larry G Campbell
Michael A Campbell

Keywords

Abstract

Cytokinin, auxin and gibberellin contents in resting and wound-responding potato tubers have not been fully determined and coordinated with wound-healing processes. Using a well-defined wound-healing model system, hormone content and expression of genes associated with hormone turnover were determined in tubers following wounding. Changes in hormone content were coordinated with: (I) formation and completion of the wound closing layer (0-5/6 days), and (II) initiation of phellogen and wound periderm formation (∼ 7 days). Quantifiable amounts of biologically active cytokinins (Z, DZ and IP) were not detected in resting or wound-responding tubers. However, the precursor IPA and catabolic product c-ZOG were found in small amounts in resting and wound-responding tubers. Wound-induced activation of cytokinin biosynthesis was suggested by an increase in t-ZR and c-ZR content at 0.5 days and large increases in IPA and c-ZR content by 3 days and throughout 7 days after wounding suggesting roles in II, but little or no role in I. Expression of key genes involved in cytokinin metabolism followed similar profiles with transcripts decreasing through 3 days and then increasing at 5-7 days after wounding. Both free IAA and IAA-Asp were present in resting tubers. While IAA-Asp was no longer present by 3 days after wounding, IAA content nearly doubled by 5 days and was more than 4-fold greater at 7 days compared to that in resting tuber (0 day) suggesting roles in II, but little or no role in I. Gibberellins were not present in quantifiable amounts in resting or wound-responding tubers. These results suggest that bio-active cytokinins are wound-induced, but their residency is temporal and highly regulated. The transient presence of active cytokinins and corresponding increases in IAA content strongly suggest their involvement in the regulation of wound periderm development. The absence of gibberellins indicates that they are not a regulatory component of wound-healing processes.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge