English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Molecular Biology 1996-Oct

X-ray structure of the ferredoxin:NADP+ reductase from the cyanobacterium Anabaena PCC 7119 at 1.8 A resolution, and crystallographic studies of NADP+ binding at 2.25 A resolution.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
L Serre
F M Vellieux
M Medina
C Gomez-Moreno
J C Fontecilla-Camps
M Frey

Keywords

Abstract

The crystal structure of the ferredoxin:NADP+ reductase (FNR) from the cyanobacterium Anabaena PCC 7119 has been determined at 2.6 A resolution by multiple isomorphous replacement and refined using 15.0 A to 1.8 A data, collected at 4 degrees C, to an R-factor of 0.172. The model includes 303 residues, the flavin adenine dinucleotide cofactor (FAD), one sulfate ion located at the putative NADP+ binding site and 328 water molecule sites. The structure of Anabaena FNR, including FAD, a network of intrinsic water molecules and a large hydrophobic cavity in the C-terminal domain, resembles that of the spinach enzyme. The major differences concern the additional short alpha-helix (residues 172 to 177 in Anabaena FNR) and residues Arg 100 and Arg 233 which binds NADP+ instead of Lys 116 and Lys 244 in the spinach enzyme. Crystals of a complex of Anabaena FNR with NADP+ were obtained. The model of the complex has been refined using 15 A to 2.25 A X-ray data, collected at -170 degrees C, to an R-factor of 0.186. This model includes 295 residues, FAD, the full NADP+ (with an occupancy of 0.8) and 444 water molecules. The 2'-5' adenine moiety of NADP+ binds to the protein as 2'-phospho-5'-AMP to the spinach FNR. The nicotinamide moiety is turned towards the surface of the protein instead of stacking onto the FAD isoalloxazine ring as would be required for hydride transfer. The model of the complex agrees with previous biochemical studies as residues Arg 100 and Arg 233 are involved in NADP+ binding and residues Arg77, Lys 53 and Lys 294, located on the FAD side of the enzyme, remain free to interact with ferredoxin and flavodoxin, the physiological partners of ferredoxin: NADP reductase.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge