English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2019-Sep

Xiexin Tang ameliorates dyslipidemia in high-fat diet-induced obese rats via elevating gut microbiota-derived short chain fatty acids production and adjusting energy metabolism.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Suwei Xiao
Zhimiao Zhang
Mengjun Chen
Junfeng Zou
Shu Jiang
Dawei Qian
Jinao Duan

Keywords

Abstract

Traditional herbal medicine has been taken as a new and effective approach to treat many chronic diseases. Xiexin Tang (XXT), a compound recipe composed of Dahuang (Rheum palmatum L.), Huangqin (Scutellaria baicalensis Georgi) and Huanglian (Coptis chinensis Franch.), has been reported to have hypoglycemic and hypolipidemic effects, but its mechanism remains unclear. Our previous study found that Xiexin Tang markedly ameliorated the composition of the gut microbiota, especially for some short chain fatty acids (SCFAs) producing bacteria, and then notably increased SCFAs production. However, the mechanism of XXT on the fermentation of gut bacteria and further improvement of obesity is not yet clear.This study aimed to unravel the molecular mechanism of XXT on the amelioration of obesity.Here, high-fat diet-induced obese rat model was established to investigate the intervention efficacy following oral administration of XXT. Additionally, the expressions of key enzymes of gut microbe-derived SCFAs biosynthesis and key targets in the signaling pathway of energy metabolism were investigated by ELISA and qPCR analysis.Results showed that XXT could notably correct lipid metabolism disorders, alleviate systematic inflammation, improve insulin sensitivity and reduce fat accumulation. Additionally, XXT could increase gut microbiota-derived SCFAs-producing capacity by enhancing mRNA levels and activities of SCFA-synthetic key enzymes such as acetate kinase (ACK), methylmalonyl-CoA decarboxylase (MMD), butyryl-CoA: acetate CoA transferase (BUT) and butyrate kinase (BUK), which markedly decreased the adenosine triphosphate (ATP) contents, elevated adenosine diphosphate (ADP) and adenosine monophosphate (AMP) levels and further lowered the energy charge (EC) in obese rats via activating peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)/uncoupling protein-2 (UCP-2) signaling pathway. What's more, XXT could notably ameliorate dyslipidemia via increasing the gene expression of 5'-AMP-activated protein kinase (AMPK) and blocking mammalian target of rapamycin (mTOR) signaling pathway.Taken together, our data provided a novel insight into the role of XXT in losing weight from energy metabolism regulation, which unraveled the molecular mechanism of XXT on the alleviation of dyslipidemia and fat heterotopic accumulation. The study provided useful information for XXT in clinical application to treat obesity.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge