English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Experimental Botany 2019-Jun

Xyloglucan Endotransglucosylase-Hydrolase30 negatively affects salt tolerance in Arabidopsis.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jingwei Yan
Yun Huang
Huan He
Tong Han
Pengcheng Di
Julien Sechet
Lin Fang
Yan Liang
Henrik Scheller
Jenny Mortimer

Keywords

Abstract

Plants have evolved various strategies to sense and respond to saline environments that severely reduce plant growth and limit agricultural productivity. Alteration to the cell wall is one strategy that helps plants adapt to salt stress. However, we do not fully understand the physiological significance of how cell wall components respond to salt stress. Here, we show that expression of XTH30, encoding a xyloglucan endotransglucosylase/hydrolase, is strongly up-regulated in response to salt stress in Arabidopsis thaliana. Loss-of-function in XTH30 leads to increased salt tolerance and overexpression of XTH30 results in salt hypersensitivity. XTH30 is located in the plasma membrane and highly expressed in the root, flower, stem, and etiolated hypocotyl. The NaCl-induced increase in XLFG (xyloglucan-derived (XyG) oligosaccharide) of the wild type is partly blocked in xth30 mutants. Loss-of-function in XTH30 slows down the decrease of crystalline cellulose content and the depolymerization of microtubules caused by salt stress. Moreover, less Na+ accumulation in shoot and H2O2 content are found in xth30 mutants in response to salt stress. Taken together, these results indicate that XTH30 modulates XyG side chains with altered abundance of XLFG, the cellulose synthesis and cortical microtubule stability, and then negatively affects salt tolerance.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge