English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Pharmacology 2006-Dec

YM-244769, a novel Na+/Ca2+ exchange inhibitor that preferentially inhibits NCX3, efficiently protects against hypoxia/reoxygenation-induced SH-SY5Y neuronal cell damage.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Takahiro Iwamoto
Satomi Kita

Keywords

Abstract

We investigated the pharmacological properties and interaction domains of N-(3-aminobenzyl)-6-{4-[(3-fluorobenzyl)oxy]phenoxy} nicotinamide (YM-244769), a novel potent Na(+)/Ca(2+) exchange (NCX) inhibitor, using various NCX-transfectants and neuronal and renal cell lines. YM-244769 preferentially inhibited intracellular Na(+)-dependent (45)Ca(2+) uptake via NCX3 (IC(50) = 18 nM); the inhibition was 3.8- to 5.3-fold greater than for the uptake via NCX1 or NCX2, but it did not significantly affect extracellular Na(+)-dependent (45)Ca(2+) efflux via NCX isoforms. We searched for interaction domains with YM-244769 by NCX1/NCX3-chimeric analysis and determined that the alpha-2 region in NCX1 is mostly responsible for the differential drug response between NCX1 and NCX3. Further cysteine scanning mutagenesis in the alpha-2 region identified that the mutation at Gly833 markedly reduced sensitivity to YM-244769. Mutant exchangers that display either undetectable or accelerated Na(+)-dependent inactivation, had markedly reduced sensitivity or hypersensitivity to YM-244769, respectively. YM-244769, like 2-[2-[4-(4-nitrobenzyloxyl)phenyl]ethyl]isothiourea methanesulfonate (KB-R7943), protected against hypoxia/reoxygenation-induced cell damage in neuronal SH-SY5Y cells, which express NCX1 and NCX3, more efficiently than that in renal LLC-PK(1) cells, which exclusively express NCX1, whereas 2-[4-(4-nitrobenzyloxy)benzyl]thiazolidine-4-carboxylic acid ethyl ester (SN-6) suppressed renal cell damage to a greater degree than neuronal cell damage. These protective potencies consistently correlated well with their inhibitory efficacies for the Ca(2+) uptake via NCX isoforms existing in the corresponding cell lines. Antisense knockdown of NCX1 and NCX3 in SH-SY5Y cells confirmed that NCX3 contributes to the neuronal cell damage more than NCX1. Thus, YM-244769 is not only experimentally useful as a NCX inhibitor that preferentially inhibits NCX3, but also has therapeutic potential as a new neuroprotective drug.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge