English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Biological Macromolecules 2019-Jan

Yulangsan polysaccharide inhibits 4T1 breast cancer cell proliferation and induces apoptosis in vitro and in vivo.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ni Qin
Shiyin Lu
Ning Chen
Chunxia Chen
Qiuqiao Xie
Xiaojie Wei
Fangxing Ye
Junhui He
Yuchun Li
Lixiu Chen

Keywords

Abstract

Yulangsan polysaccharide (YLSPS) is derived from the root of Millettia pulchra (Benth.) Kurz var. Recent studies have postulated YLSPS as a regimen for cancer treatment. However, the underlying mechanism anti-breast cancer is still poorly unknown. The aim of this study was to examine the suppressive and apoptosis effect of YLSPS on the growth of breast cancer cell 4T1 and its possible underlying mechanism. In this study, breast cancer cell 4T1 viability and apoptosis were assessed by CCK-8 and flow cytometry, relative quantitative real-time PCR and western blot after treated with drug-serum of YLSPS. Furthermore, therapy experiments were conducted using a Balb/c mouse transplanted tumor model of breast cancer. The number of apoptotic cells and microvascular density (MVD) in the tumor tissues were assessed by TUNEL and CD34 immunostaining. Immunohistochemical assays and ELISA were used to detect the expression of VEGF, Bcl-2, Bax and Caspase-3 in the tissues. The in vitro studies showed that the drug-serum of YLSPS significantly inhibition of proliferation and effectively induced apoptosis of 4T1 cells. Oral administration of YLSPS in the breast cancer models significantly reduced the tumor volume and weight. The enhanced antitumor efficacy was associated with decreased angiogenesis, an enhanced antioxidant capacity, an increased induction of apoptosis and an inhibition of lung metastasis. These findings indicate that YLSPS significantly inhibited mouse breast cancer growth in vitro and in vivo. These data suggest that YLSPS may serve as a potential therapeutic agent for breast cancer.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge