English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Nutrition 2008-Mar

Zeaxanthin is bioavailable from genetically modified zeaxanthin-rich potatoes.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Achim Bub
Jutta Möseneder
Gerhard Wenzel
Gerhard Rechkemmer
Karlis Briviba

Keywords

Abstract

The carotenoid zeaxanthin accumulates in the human macula lutea and protects retinal cells from blue light damage. However, zeaxanthin intake from food sources is low. Increasing zeaxanthin in common foods such as potatoes by traditional plant breeding or by genetic engineering could contribute to an increased intake of this carotenoid and, consequently, to a decreased risk of age-related macular degeneration. Our aim was to investigate whether zeaxanthin from genetically modified zeaxanthin-rich potatoes is bioavailable in humans. Three men participated in this randomized, controlled double-blinded, crossover pilot study. All subjects consumed 1,100 g of mashed potatoes, either genetically modified (Solanum tuberosum L. var. Baltica GM47/18; 3 mg zeaxanthin) or wild-type control potatoes (Solanum tuberosum L. var. Baltica; 0.14 mg zeaxanthin). A second treatment was followed after a 7-day wash-out period. The concentration of zeaxanthin was significantly increased in chylomicrons after consumption of genetically modified potatoes and 0.27 mg of the 3 mg zeaxanthin dose could be detected in chylomicrons. Consumption of control potatoes had no effect on concentrations of zeaxanthin in chylomicrons. After normalization of chylomicron zeaxanthin for plasma triacylglycerol, the time course of zeaxanthin concentrations peaked at 7 h after consumption of genetically modified potatoes. There were no significant differences in the concentrations of other major potato carotenoids such as lutein and beta-carotene in chylomicrons after consumption of genetically modified and wild type control potatoes. Thus, consumption of zeaxanthin-rich potatoes significantly increases chylomicron zeaxanthin concentrations suggesting that potentially such potatoes could be used as an important dietary source of zeaxanthin.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge