English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Naunyn-Schmiedeberg's Archives of Pharmacology 2015-Nov

Zerumbone, a ginger sesquiterpene, induces apoptosis and autophagy in human hormone-refractory prostate cancers through tubulin binding and crosstalk between endoplasmic reticulum stress and mitochondrial insult.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Mei-Ling Chan
Jui-Wei Liang
Lih-Ching Hsu
Wei-Ling Chang
Shoei-Sheng Lee
Jih-Hwa Guh

Keywords

Abstract

Zerumbone, a natural monocyclic sesquiterpene, is the main component of the tropical plant Zingiber zerumbet Smith. Zerumbone induced antiproliferative and apoptotic effects against PC-3 and DU-145, two human hormone-refractory prostate cancer (HRPC) cell lines. Zerumbone inhibited microtubule assembly and induced an increase of MPM-2 expression (specific recognition of mitotic proteins). It also caused an increase of phosphorylation of Bcl-2 and Bcl-xL, two key events in tubulin-binding effect, indicating tubulin-binding capability and mitotic arrest to zerumbone action. Furthermore, zerumbone induced several cellular effects distinct from tubulin-binding properties. First, zerumbone significantly increased, while paclitaxel (as a tubulin-binding control) decreased, Mcl-1 protein expression. Second, paclitaxel but not zerumbone induced Cdk1 activity. Third, zerumbone other than paclitaxel induced Cdc25C downregulation. The data suggest that, in addition to targeting tubulin/microtubule, zerumbone may act on other targets for signaling transduction. Zerumbone induced mitochondrial damage and endoplasmic reticulum (ER) stress as evidenced by the loss of mitochondrial membrane potential and upregulation of GRP-78 and CHOP/GADD153 expression. Zerumbone induced an increase of intracellular Ca(2+) levels, a crosstalk marker between ER stress and mitochondrial insult, associated with the formation of active calpain I fragment. It induced apoptosis through a caspase-dependent way and caused autophagy as evidenced by dramatic LC3-II formation. In summary, the data suggest that zerumbone is a multiple targeting compound that inhibits tubulin assembly and induces a crosstalk between ER stress and mitochondrial insult, leading to apoptosis and autophagy in HRPCs.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge