English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical Pharmacology 2013-Jun

Zinc protoporphyrin suppresses cancer cell viability through a heme oxygenase-1-independent mechanism: the involvement of the Wnt/β-catenin signaling pathway.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Shuai Wang
Jori E Avery
Bethany N Hannafon
Stuart E Lind
Wei-Qun Ding

Keywords

Abstract

Zinc protoporphyrin (ZnPP), a known inhibitor of heme oxygenase-1 (HO-1), has been reported to have anticancer activity in both in vitro and in vivo model systems. While the mechanisms of ZnPP's anticancer activity remain to be elucidated, it is generally believed that ZnPP suppresses tumor growth through inhibition of HO-1 activity. We examined this hypothesis by altering cellular levels of HO-1 in human ovarian (A2780) and prostate cancer (DU145) cells and found that ZnPP inhibits cancer cell viability through an HO-1-independent mechanism. Neither over-expression nor knockdown of HO-1 significantly alters ZnPP's cytotoxicity in human cancer cells, indicating that HO-1 does not mediate ZnPP's inhibitory effect on cancer cell growth. Consistent with these observations, tin protoporphyrin (SnPP), a well-established HO-1 inhibitor, was found to be much less cytotoxic than ZnPP, and docosahexaenoic acid (DHA), an HO-1 inducer, enhanced ZnPP's cytotoxicity. In an effort to define the mechanisms of ZnPP-induced cytotoxicity, we found that ZnPP but not SnPP, diminished β-catenin expression through proteasome degradation and potently suppressed β-catenin-mediated signaling in our model systems. Thus, ZnPP-induced cytotoxicity is independent of HO-1 expression in cancer cells and the Wnt/β-catenin pathway is potentially involved in ZnPP's anticancer activity.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge