English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Analyst, The 2020-Jul

A fish scale-like magnetic nanomaterial as a highly efficient sorbent for monitoring the changes in auxin levels under cadmium stress

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Qingqing Ding
Hui Chen
Chuanhui Huang
Qiaomei Lu
Ping Tong
Wenmin Zhang
Lan Zhang

Keywords

Abstract

Sorbents with high surface utilization and good dispersibility are of great importance for the extraction performance of magnetic solid-phase extraction (MSPE). In this study, a fish scale-like magnetic nanomaterial (Co@Co3O4/OCN) was synthesized, which can be used as a highly efficient MSPE sorbent due to its strong magnetism, special morphology, doping of N element, numerous micro-mesopore cavities and organic functional groups (hydroxyl and carboxyl). Furthermore, a Co@Co3O4/OCN-based MSPE method for monitoring the changes in the levels of three auxins (indole-3-acetic acid, indole-3-propionic acid and 3-indole butyric acid) was successfully established. Wide linear ranges (1.0-1000.0 pg mL-1) with good correlation coefficients (R > 0.9992), low limits of detection (LODs, 0.2-4.0 pg mL-1) and satisfactory repeatability (RSD ≤5.9%, n = 3) were obtained. Using the developed method, various growth parts and different growth periods of plants under Cd stress were monitored. The results showed that auxins in various parts of plants showed differential response under Cd stress, and there was a threshold for the changes in auxin levels against Cd stress. This indicates that the developed fish scale-like Co@Co3O4/OCN nanomaterial has a good application prospect for enriching small molecular targets containing hydroxyl and carboxyl groups.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge