English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Ecotoxicology 2020-Feb

A novel sigma class glutathione S-transferase gene in freshwater planarian Dugesia japonica: cloning, characterization and protective effects in herbicide glyphosate stress.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
He-Cai Zhang
Yu-Juan Yang
Ke-Xue
Chang-Ying Shi
Guang-Wen Chen
De-Zeng Liu

Keywords

Abstract

As the top-selling herbicide in the world, glyphosate distributes widely in natural environment and its influence on the ecological security and human health has attracted more and more concern. Glutathione S-transferases (GSTs) are a well-characterized superfamily of isoenzymes for cellular defense against exogenous toxic substances and therefore protect organisms from injury. In this study, the complete cDNA sequence of GST gene (named as Dja-GST) in freshwater planarian Dugesia japonica was firstly cloned by means of RACE method. The full-length Dja-GST comprises of 706 nucleotides which encodes a polypeptide of 200 amino acids. Dja-GST has two representative GST domains at the N- and C-termini. The conservative GST-N domain includes G-site Y8, F9, R14, W39, K43, P52 and S64, while the variable GST-C domain contains H-site K104, V156, D159 and L161. Sequence analysis, phylogenetic tree reconstruction and multiple alignment collectively indicate that Dja-GST belongs to the Sigma class of GST superfamily. Also, GST gene expression profile, GST enzymatic activity and MDA content in response to glyphosate exposure were systematically investigated and the correlations among them were analyzed. The results suggest that glyphosate exposure modified the mRNA transcription and enzymatic activity of GST, as well as the MDA content in planarians, indicating that Dja-GST might play an important part in organisms defending against oxidative stress induced by glyphosate. This work lays a molecular foundation for further exploring the exact functions of Dja-GST and gives an important implication for evaluating the ecological environment effects of herbicide glyphosate.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge