English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Signaling and Behavior 2020-Sep

A sustained CYCLINB1;1 and STM expression in the neoplastic tissues induced by Rhodococcus fascians on Arabidopsis underlies the persistence of the leafy gall structure

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Alicja Dolzblasz
Alicja Banasiak
Danny Vereecke

Keywords

Abstract

is a gram-positive phytopathogen that infects a wide range of plant species. The actinomycete induces the formation of neoplastic growths, termed leafy galls, that consist of a gall body covered by small shoots of which the outgrowth is arrested due to an extreme form of apical dominance. In our previous work, we demonstrated that in the developing gall, auxin drives the transdifferentiation of parenchyma cells into vascular elements. In this work, with the use of transgenic Arabidopsis thaliana plants carrying molecular reporters for cell division (pCYCB1;1:GUS) and meristematic activity (pSTM:GUS), we analyzed the fate of cells within the leafy gall. Our results indicate that the size of the gall body is determined by ongoing mitotic cell divisions as illustrated by strong CYCB1;1 expression combined with the de novo formation of new meristematic areas triggered by STM expression. The shoot meristems that develop in the peripheral parts of the gall are originating from high ectopic STM expression. Altogether the presented data provide further insight into the cellular events that accompany the development of leafy galls in response to R. fascians infection.

Keywords: Auxin; cell cycle; cytokinin; hyperplasia; shoot meristem; tumor.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge