English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Analytica Chimica Acta 2020-Apr

Active control of selectivity in organic acid analysis by gas chromatography.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ernest Darko
Kevin Thurbide

Keywords

Abstract

A new method that allows organic acid selectivity to be dynamically controlled during gas chromatography (GC) is presented. It employs dual in-series stainless steel columns, each coated with a pH-adjusted water stationary phase. The first is a 2 m column coated with a pH 11.4 phase that is connected to a second 11 m column coated with a pH 2.2 phase. In this arrangement, organic acids within sample mixtures are trapped on the first column, while the remaining non-ionizable components continue to separate and elute in the system. Later, by injecting a volatile formic acid solution, the trapped acids are released in-situ to the second column for separation and analysis as desired. The method provides good reproducibility with analyte retention times in consecutive trials yielding an average RSD of 1.9%. Further, depending on column temperature, analytes can be readily retained for periods investigated up to about 30 min without significant deterioration in peak shape. This feature provides considerable control over analyte selectivity and resolution compared to conventional separations. Further, by adding a third conventional GC column in-series, both typical hydrocarbon and enhanced organic acid separations are made possible. The method is applied to the analysis of complex mixtures and matrix interference is found to be significantly minimized. Results indicate that this approach offers beneficial advantages for the selective GC analysis of such acidic analytes.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge