English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Plant Research 2020-Mar

Alleviation of osmotic stress by H2S is related to regulated PLDα1 and suppressed ROS in Arabidopsis thaliana.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Min Zhao
Qin Liu
Yue Zhang
Ning Yang
Guofan Wu
Qiaoxia Li
Wei Wang

Keywords

Abstract

Hydrogen sulfide (H2S) is an important gaseous molecule responding to osmotic stress in plant. Phospholipase Dα1 (PLDα1) and reactive oxygen species (ROS) are involved in many biotic or abiotic stress responses. Using the seedlings of Arabidopsis thaliana ecotype (WT), PLDα1 deficient mutant (pldα1) and the L-cysteine desulfhydrase (L-DEs) deficient mutant (lcd) as materials, the effect of H2S responding to osmotic stress and the functions of PLDα1 and ROS in this response were investigated. The results showed that H2S, PLDα1 and ROS were involved in osmotic stress resistance. Exogenous sodium hydrosulfide (NaHS) promoted the endogenous H2S content and up-regulated the expression of LCD in WT, lcd and plda1. Exogenous phosphatidic acid (PA) enhanced the H2S content and up-regulated the expressions of LCD in WT and plda1 but had no significant effect on the H2S content and LCD expression in lcd under osmotic stress. This suggested that H2S was located downstream of PLDα1 to participate in the osmotic stress signal response. Exogenous NaHS treatment regulated the antioxidant enzymes (SOD, POD, and CAT). The activities and the gene relative expressions of antioxidant enzymes in pldα1 and lcd were higher than those in WT under osmotic stress. This indicated that H2S and PLD regulated the antioxidant enzyme system under osmotic stress. The ROS level, electrolyte leakage (EL), malondialdehyde (MDA) were decreased by NaHS under osmotic stress, demonstrating H2S maintained the membrane integrity. All of these results revealed that H2S alleviated the osmotic stress by elevating PLD and suppressing ROS in A. thaliana.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge