English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Biological Macromolecules 2020-Mar

Anti-aging effects on Caenorhabditis elegans of a polysaccharide, O-acetyl glucomannan, from roots of Lilium davidii var. unicolor Cotton.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Heping Hui
Aiyi Xin
Haiyan Cui
Hui Jin
Xiaoyan Yang
Haoyue Liu
Bo Qin

Keywords

Abstract

The anti-aging activities on Caenorhabditis elegans of a polysaccharide, O-acetyl glucomannan (LPR), purified from roots of Lilium davidii var. unicolor Cotton, were assessed by observing the mean lifespan, reproduction, pharyngeal pumping and stress response on nematodes. Additionally, the fluorescence intensity of lipofuscin and the level of reactive oxygen species (ROS) were detected. Also the activities of superoxide dismutase (SOD), catalase (CAT) and contents of malondialdehyde (MDA) were determined by the kit method. The results showed that LPR effectively delayed the aging of C. elegans in a dose-dependent manner. When the concentration reached 4 mg/mL, LPR extended the mean lifespan of C. elegans by up to 40%, 61% (P < 0.01) and 50% (P < 0.05) under normal, thermal and oxidative stress culture conditions, respectively. Moreover, LPR remarkably increased the reproduction duration of the nematodes at a concentration of 1 mg/L, and significantly decreased the ROS and lipofuscin level of C. elegans in three dosage groups. Further study illustrated that LPR at 4 mg/mL strongly increased the activity of SOD and CAT by 39.03% (P < 0.01) and 41.89% (P < 0.05), and decreased the lipid peroxidation of MDA level in C. elegans by 52.59% (P < 0.005) compared to a control. It was inferred that LPR provided stress resistance to heat and oxidation, and prolonged the lifespan of wild type N2 C. elegans mainly by elevating the function of nematode antioxidant defense systems and by scavenging free radicals. These findings provided evidence for the anti-aging properties of this polysaccharide from L. davidii.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge