English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Nutrients 2020-Apr

Anti-Fatigue Effect of Prunus Mume Vinegar in High-Intensity Exercised Rats.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jeong-Ho Kim
Hyun-Dong Cho
Yeong-Seon Won
Seong-Min Hong
Kwang-Deog Moon
Kwon-Il Seo

Keywords

Abstract

Nowadays, new types of vinegar have been developed using various raw materials and biotechnological processes. The fruit of Prunus mume has been extensively distributed in East Asia and used as a folk medication for fatigue. In this study, the Prunus mume vinegar (PV) was produced by a two-step fermentation and was evaluated for its anti-fatigue activity by C2C12 myoblasts and high-intensity exercised rats. The administration of PV significantly improved running endurance and glycogen accumulation in the liver and muscle of PV supplemented rats compared to sedentary and exercised control groups. In addition, PV supplementation elicited lower fatigue-related serum biomarkers, for instance, ammonia, inorganic phosphate, and lactate. PV administered rats exhibited higher lactate dehydrogenase activity and glutathione peroxidase activity, and lower creatine kinase activity and malondialdehyde levels. Furthermore, phenolic compounds in PV were identified using HPLC analysis. The phenolic acids analyzed in PV were protocatechuic acid, syringic acid, chlorogenic acid, and its derivates. These results indicate that the administration of PV with antioxidative property contributes to the improvement of fatigue recovery in exhausted rats. The findings of this study suggest that the PV containing various bioactive constituents can be used as a functional material against fatigue caused by high-intensity exercise.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge