English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
ACS Omega 2020-May

Anti-inflammatory, Antiplatelet Aggregation, and Antiangiogenesis Polyketides From Epicoccum sorghinum: Toward an Understating of Its Biological Activities and Potential Applications

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Chi-Ying Li
Ching-Chia Chang
Yi-Hong Tsai
Mohamed El-Shazly
Chin-Chung Wu
Shih-Wei Wang
Tsong-Long Hwang
Chien-Kei Wei
Judit Hohmann
Zih-Jie Yang

Keywords

Abstract

The ethyl acetate extract of an endophyte Epicoccum sorghinum exhibited anti-inflammatory activity at a concentration of <10 μg/mL. By bioassay-guided fractionation, one new compound, named epicorepoxydon A (1), and one unusual bioactive compound, 6-(hydroxymethyl)benzene-1,2,4-triol (6), together with six known compounds, were isolated from E. sorghinum. The structures of all isolates were established by spectroscopic analyses. The relative configuration of 1 was deduced by the NOESY spectrum and its absolute configuration was determined by X-ray single-crystal analysis. The biological activities of all isolates were evaluated using four types of bioassays including cytotoxicity, anti-inflammatory, antiplatelet aggregation, and antiangiogenesis activities. Compounds 4 and 6 showed potent anti-inflammatory activity, compound 2 possessed potent antiplatelet aggregation and antiangiogenesis activities, and compound 6 demonstrated antiangiogenesis activity. This fungal species can cause a human hemorrhagic disorder known as onyalai. In this study, we identified the active components with antiplatelet aggregation and antiangiogenesis activities, which may be related to the hemorrhagic disorder caused by this fungus. Moreover, we proposed a biosynthetic pathway of the isolated polyketide secondary metabolites and investigated their structure-activity relationship (SAR). Our results suggested that E. sorghinum is a potent source of biologically active compounds that can be developed as antiplatelet aggregation and anti-inflammatory agents.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge