English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Biological Macromolecules 2020-Apr

Antiviral activity of native banana lectin against bovine viral diarrhea virus and bovine alphaherpesvirus type 1.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Laura de Camargo
Tony Picoli
Geferson Fischer
Ana de Freitas
Rodrigo de Almeida
Luciano Pinto

Keywords

Abstract

Bovine viral diarrhea virus (BVDV) and bovine alphaherpesvirus type 1 (BoHV-1) are responsible for major economic losses of livestock worldwide, making their eradication an important objective of veterinary research. Vaccines against these infectious agents are commercially available but have some limitations due to the specific features of these viral agents. The development of new antiviral drugs is therefore essential. Native banana lectin (BanLec) is a lectin isolated from banana fruit (Musa acuminata) and has a high affinity for mannose glycans found in several viral envelopes. The inhibitory properties of this lectin against several viruses has already been demonstrated. The aim of this work was therefore to test the antiviral and virucidal activities of BanLec against BVDV-1 and BoHV-1. Its antiviral activity was assessed by measuring the viral titer and viability of susceptible Madin-Darby Bovine Kidney cells (MDBK) treated with BanLec before and after viral infection. The virucidal properties of BanLec were determined by preincubation of the lectin with the viruses, followed by measurement of the viral load in exposed cells. Treatment with 25 μg/mL BanLec resulted in high levels of inhibition against BVDV-1 (99.98%) and BoHV-1 (99.68%) without affecting cell viability, demonstrating promising potential as an antiviral agent.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge