English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant signaling & behavior 2020-Mar

Bacteria-derived diacetyl enhances Arabidopsis phosphate starvation responses partially through the DELLA-dependent gibberellin signaling pathway.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Rafael Morcillo
Sunil Singh
Danxia He
Juan Vílchez
Richa Kaushal
Wei Wang
Weichang Huang
Paul Paré
Huiming Zhang

Keywords

Abstract

Plant growth-promoting rhizobacteria (PGPR) are naturally occurring soil microorganisms that colonize roots and stimulate plant growth. Some PGPR strains can directly regulate plant growth in the absence of physical contact with the plant, via volatile organic compounds (VOCs) emissions. Recently, we have described that Arabidopsis thaliana respond differentially to diacetyl, a VOC from Bacillus amyloliquefaciens strain GB03 (GB03), through integral modulation of the immune system and the phosphate-starvation response (PSR) system, resulting in either mutualism or immunity. Under phosphate deficient conditions, diacetyl enhances salicylic acid- and jasmonic acid-mediated immunity and consequently causes plant hyper-sensitivity to phosphate deficiency. Here, we show that application of exogenous gibberellin (GA) partially alleviates the deleterious effect caused by either B. amyloliquefaciens GB03 VOCs or diacetyl in Arabidopsis under phosphate deficient conditions, while DELLA quadruple mutant exposed to GB03 VOCs exhibits a partial reduction on the stress symptoms. Moreover, diacetyl appears to enhance DELLA protein accumulation and increase the expression of several GA deactivation-related genes. These findings suggest that the DELLA-mediated GA signaling pathway is involved in the bi-faceted role of GB03 VOCs in regulating plant growth.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge