English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Current Microbiology 2020-Sep

Bacterial Diversity in the Rhizosphere of Anabasis aphylla in the Gurbantunggut Desert, China

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yalin Jiao
Guangming Chu
Zhen'an Yang
Ying Wang
Mei Wang

Keywords

Abstract

Bacteria are the most abundant soil microbes and are sensitive to environmental change, especially soil carbon (C) and nitrogen (N) dynamics. The bacterial diversity of rhizosphere and bulk soils associated with desert plants is not well understood. In this study, we measured the properties of rhizosphere and bulk soils at different depths (0-20, 20-40, 40-60, and 60-80 cm), the diversity of bacterial communities (16S rDNA amplicon sequencing), and their relationships with Anabasis aphylla in the southern margin of the Gurbantunggut Desert, Junggar Basin, China. A total of 11,420 operational taxonomic units (OTUs) were obtained from 40 soil samples, belonging to 641 genera, 269 families, 137 orders, 61 classes, and 44 phyla. There were significant differences in electrical conductivity (EC), available nitrogen (AN), available phosphorus (AP), available potassium (AK), and bacterial diversity. The dominant bacterial communities of the rhizosphere and bulk soils at the phylum level were Actinobacteria, Proteobacteria, and Bacteroidetes. At the genus level, the dominant communities of the rhizosphere and bulk soils were Halomonas and Glycomyces, respectively. At different soil depths, the abundances of bacteria in the soil were 10.2% (0-20 cm) > 8.4% (20-40 cm) > 8.3% (60-80 cm) > 6.2% (40-60 cm). Our results indicate that bacteria in the phyla Actinobacteria and Proteobacteria, as well as the genus Halomonas, are key to the drought and salt tolerance of A. aphylla.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge