English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 2003-Jul

beta-alanine N-methyltransferase of Limonium latifolium. cDNA cloning and functional expression of a novel N-methyltransferase implicated in the synthesis of the osmoprotectant beta-alanine betaine.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Suresh Babu Raman
Bala Rathinasabapathi

Keywords

Abstract

Beta-alanine (Ala) betaine, an osmoprotectant suitable under saline and hypoxic environments, is found in most members of the halophytic plant family Plumbaginaceae. In Limonium latifolium (Plumbaginaceae), it is synthesized via methylation of beta-Ala by the action of a trifunctional S-adenosyl L-methionine (Ado-Met): beta-Ala N-methyltransferase (NMTase). Peptide sequences from purified beta-Ala NMTase were used to design primers for reverse transcriptase-PCR, and several cDNA clones were isolated. The 5' end of the cDNA was cloned using a 5'-rapid amplification of cDNA ends protocol. A 500-bp cDNA was used as a probe to screen a lambda-gt10 L. latifolium leaf cDNA library. Partial cDNA clones represented two groups, NMTase A and NMTase B, differing only in their 3'-untranslated regions. The full-length NMTase A cDNA was 1,414 bp and included a 1128-bp open reading frame and a 119-bp 5'-untranslated region. The deduced amino acid sequence of 375 residues had motifs known to be involved in the binding of Ado-Met. The NMTase mRNA was expressed in L. latifolium leaves but was absent in Limonium sinuatum, a member of the genus that lacks the synthetic pathway for beta-Ala betaine. NMTase mRNA expression was high in young and mature leaves and was enhanced by light. NMTase cDNA was expressed in yeast (Saccharomyces cerevisiae) under the control of a galactose-inducible promoter. Protein extracts of galactose-induced recombinant yeast had Ado-Met-specific NMTase activities that were highly specific to beta-Ala, N-methyl beta-Ala, and N,N-dimethyl beta-Ala as methyl acceptors. NMTase activities were not detectable in comparable protein extracts of yeast, transformed with vector control. The NMTase protein sequence shared homology with plant caffeic acid O-methyltransferases and related enzymes. Phylogenetic analyses suggested that beta-Ala NMTase represents a novel family of N-methyltransferases that are evolutionarily related to O-methyltransferases.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge