English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Natural Products 2020-Apr

Betulinic Acid Inhibits RANKL-Induced Osteoclastogenesis via Attenuating Akt, NF-κB, and PLCγ2-Ca2+ Signaling and Prevents Inflammatory Bone Loss.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Da Jeong
Sung Kwak
Myeung Lee
Kwon-Ha Yoon
Ju-Young Kim
Chang Lee

Keywords

Abstract

The increase of bone-resorbing osteoclast activity in bone remodeling is the major characteristic of various bone diseases. Thus, inhibiting osteoclastogenesis and bone-resorbing function may be an effective therapeutic target for bone diseases. Betulinic acid (BA), a natural plant-derived pentacyclic triterpenoid compound, is known to possess numerous pharmacological and biochemical properties including anti-inflammatory, anticancer, and antiadipogenic activity. However, the effect of BA on osteoclast differentiation and function in bone metabolism has not been demonstrated so far. In this study, we investigated whether BA could suppress RANKL-induced osteoclastogenesis and bone resorption. Interestingly, BA significantly suppressed osteoclastogenesis by decreasing the phosphorylation of Akt and IκB, as well as PLCγ2-Ca2+ signaling, in pathways involved in early osteoclastogenesis as well as through the subsequent suppression of c-Fos and NFATc1. The inhibition of these pathways by BA was once more confirmed by retrovirus infection of constitutively active (CA)-Akt and CA-Ikkβ retrovirus and measurement of Ca2+ influx. BA also significantly inhibited the expression of osteoclastogenesis-specific marker genes. Moreover, we found that BA administration restored the bone loss induced through acute lipopolysaccharide injection in mice by a micro-CT and histological analysis. Our findings suggest that BA is a potential therapeutic candidate for bone diseases involving osteoclasts.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge