English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biomolecular Structure and Dynamics 2020-Sep

Biological evaluation of gallic acid and quercetin derived from Ceriops tagal: insights from extensive in vitro and in silico studies

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
V Sachithanandam
A Parthiban
P Lalitha
Jayaraman Muthukumaran
Monika Jain
Dhanasekar Elumalai
Kamalraja Jayabal
R Sridhar
Purvaja Ramachandran
Ramesh Ramachandran

Keywords

Abstract

Gallic acid (PubChem CID: 370) and quercetin (PubChem CID: 5280343) are major phenolic compounds in many mangrove plants that have been related to health cure. In the present study, the active fractions namely gallic acid (1) and quercetin (2) were isolated from the methanolic extract of leaves of Ceriops tagal in a Tropical mangrove ecosystem of Andaman and Nicobar Island (ANI), India. The chemical structures were determined by spectroscopic analysis: Fourier-Transform Infrared spectroscopy (FT-IR), 1H, 13C Nuclear Magnetic Resonance (NMR) spectroscopy, and High-resolution mass spectrometry (HRMS). The anticancer activity of isolated compounds (1) and (2) were evaluated by in vitro assays against two human cancer cell lines namely, HeLa (Cervical) and MDA-MB231 (Breast) cancer cells revealed that IC50 values of gallic acid (HeLa: 4.179197 ± 0.45 µg/ml; MDA-MB231: 80.0427 ± 0.19 µg/ml at 24 h) and quercetin (HeLa: 99.914 ± 0.18 µg/ml; MDA-MB231: 18.288382 ± 0.12 µg/ml at 24 h), respectively. Antioxidant properties of gallic acid (1) and quercetin (2) are found to be IC50 value of 0.77 ± 0.41 µg/ml and 1.897 ± 0.81 µg/ml, respectively. Molecular docking results explained that gallic acid (1) and quercetin (2) showed estimated binding free energy (ΔG) of -5.4 and -6.9 kcal/mol towards drug target Bcl-B protein, respectively. The estimated inhibition constant (Ki) for these two molecules are 110 and 8.75 μM, respectively. The MD simulation additionally supported that quercetin molecule is significantly improved the structural stability of Bcl-B protein. The present study provides key insights about the importance of polyphenols, and thus leads to open the therapeutic route for anti-cancer drug discovery process. Communicated by Ramaswamy H. Sarma.

Keywords: Anticancer; Bcl-B protein; antioxidant; gallic acid; in vitro; mangrove plant; molecular docking; molecular dynamics simulation; quercetin.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge