English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemistry 2020-Aug

Biosynthesis of Metal Nanoparticles from Leaves of Ficus palmata and Evaluation of Their Anti-inflammatory and Anti-diabetic Activities

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Satish Sati
Gurpreet Kour
Ankit Bartwal
Maneesha Sati

Keywords

Abstract

Metal nanoparticles (AgNPs and ZnONPs) were synthesized using a green methodology with the green leaves extract of the Bedu (Ficus palmata) tree as a reducing agent and the support of natural fibers. The synthesized AgNPs and ZnONPs were characterized by several techniques, including ultraviolet-visible spectral analysis, powder X-ray diffraction crystal analysis, scanning electron microscopy, EDAX, transmission electron microscopy, and Fourier transform infrared spectroscopy, which confirmed that the synthesized particles are in the nano range (1-100 nm), i.e., 30 nm for AgNPs with polydispersity and a spherical shape, whereas the average size of synthesized ZnONPs is 34 nm and they seem to exhibit a distorted spherical shape. The results of thermogravimetric analysis confirmed a weight loss of 18.02% for AgNPs under exothermic conditions due to the desorption of water, and ZnONPs show weight loss between 265 and 500 °C. Both synthesized MNPs are highly thermally stable. Anti-inflammatory and anti-diabetic studies of metal NPs have been evaluated. The AgNPs and ZnONPs of F. palmata leaves showed remarkably highly potent activity for respective strains. In vitro anti-diabetic activity was found for inhibition of α-amylases and α-glucosidases by synthesized silver nanoparticles.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge