English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Insect Biochemistry and Molecular Biology 2000-Oct

cDNA cloning, biochemical characterization and inhibition by plant inhibitors of the alpha-amylases of the Western corn rootworm, Diabrotica virgifera virgifera.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
E Titarenko
M J Chrispeels

Keywords

Abstract

We report the characterization and cDNA cloning of two alpha-amylase isozymes from larvae of the Western corn rootworm (Diabrotica virgifera virgifera LeConte). Larvae raised on artificial media have very low levels of amylase activity, and much higher levels are found in larvae raised on maize seedlings. At pH 5.7, the optimum pH for enzyme activity, the alpha-amylases are substantially but not completely inhibited by amylase inhibitors from the common bean (Phaseolus vulgaris) and from wheat (Triticum aestivum). Using the reverse transcriptase polymerase chain reaction (RT-PCR), we cloned two cDNAs with 83% amino acid identity that encode alpha-amylase-like polypeptides. Expression of one of the two cDNAs in insect cells with a baculovirus vector shows that this cDNA encodes an active amylase with a mobility that corresponds to that of one of the two isozymes present in larval extracts. The expressed enzyme is substantially inhibited by the same two inhibitors. We also show that expression in Arabidopsis of the cDNA that encodes the amylase inhibitor AI-1 of the common bean results in the accumulation of active inhibitor in the roots, and the results are discussed with reference to the possibility of using amylase inhibitors as a strategy to genetically engineer maize plants that are resistant to Western corn rootworm larvae.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge