English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Bioorganic Chemistry 2020-Apr

Calix[6]arene diminishes receptor tyrosine kinase lifespan in pancreatic cancer cells and inhibits their migration and invasion efficiency.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Karin Rocha-Brito
Emanuella Fonseca
Breno Oliveira
Ângelo de Fátima
Carmen Ferreira-Halder

Keywords

Abstract

Pancreatic cancer is a challenging malignancy, mainly due to aggressive regional involvement, early systemic dissemination, high recurrence rate, and subsequent low patient survival. Scientific advances have contributed in particular by identification of molecular targets as well as the definition of the mechanism of action of the drug candidate in the cellular microenvironment. Previously, we have reported the identification of the molecular mechanisms by which calix[6]arene (CLX6) reduces the viability and proliferation of pancreatic cancer cells. Now, we show the biochemical mechanisms by which CLX6 decreases the aggressiveness of Panc-1 cells, focusing specifically on receptor tyrosine kinases (RTK). The results show that clathrin-mediated endocytosis is involved in CLX6-induced AXL receptor tyrosine kinase degradation in Panc-1 cells. This response may be related to the interaction of CLX6 with the tyrosine kinase receptor binding site (such as AXL). As a result, RTK is internalized and degraded by endocytosis, a condition that negatively impacts events dependent on its signaling. Additionally, CLX6 inhibits migration and invasion of Panc-1 cells by downregulating FAK (downstream mediator of AXL) activity and reducing expression levels of MMP2 and MMP9, directly related to the metastatic profile of these cells. It is noteworthy that according to the mechanism proposed here, CLX6 appears as a candidate to be used in therapeutic protocols of patients that display high expression of AXL and consequently, poor diagnosis.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge