English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2020-Feb

Chemical profiling of secondary metabolites from Himatanthus drasticus (Mart.) Plumel latex with inhibitory action against the enzymes α-amylase and α-glucosidase: In vitro and in silico assays.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Francimauro Morais
Kirley Canuto
Paulo Ribeiro
Alison Silva
Otilia Pessoa
Cleverson Freitas
Nylane Alencar
Ariclecio Oliveira
Márcio Ramos

Keywords

Abstract

Himatanthus drasticus is an important medicinal plant whose latex is traditionally used in Northeast Brazil to treat various diseases, including diabetes. The use of α-amylase and α-glucosidase inhibitors can be an effective strategy to modulate levels of postprandial hyperglycemia via control of starch metabolism.This study aimed to verify if H. drasticus latex has inhibitory activity against enzymes linked to type 2 diabetes, besides chemically characterizing the metabolites responsible for such activities. In addition, in silico analysis was performed to support the traditional claim of possible antidiabetic activity of this latex.

MATERIALS AND METHODS
Latex from H. drasticus stems was sequentially partitioned with n-hexane (FHDH), CHCl3 (FHDC) and EtOH (FHDHA). Wash extraction of the FHDHA fraction was performed to obtain the other extract fractions. The FHDHA was submitted to chromatography in a SPE C18 cartridge using gradient elution with MeOH/H2O to produce five fractions: FHDHA1, FHDHA2, FHDHA3, FHDHA4 and FHDHA5. The FHDHA1 was subjected to semi-preparative reverse phase HPLC. Lineweaver-Burk plots were used to investigate the kinetic parameters of α-amylase and α-glucosidase inhibitory activity. The interactions between plumieride and porcine pancreatic α-amylase and α-glucosidase were analyzed through an in silico molecular docking study.

RESULTS
Phytochemical identification of compounds present in the FHDHA fraction of H. drasticus latex was possible by 1H, 13C NMR analysis and mass spectrometry, and the results were compared with the literature. The identified compounds were α-ethyl glucoside, protocatechuic acid, 3-O-caffeoylquinic acid, 15-demethylplumieride acid, 5-O-caffeoylquinic acid, caffeic acid, vanillic acid, plumieride, and catechin. The inhibition results of the fractions tested against α-amylase and α-glucosidase showed inhibitory activities dependent on the increase of fractions and compound concentrations. The IC50 results obtained from FHDHA, FHDHA1 and plumieride fractions against α-amylase were 36.46, 72.61, 33.87 μg/mL respectively. The IC50 of plumieride was the closest to that of acarbose (22.52 μg/mL), a result similar to that obtained for α-glucosidase. The type of inhibition was competitive for both enzymes.

There was strong inhibition of α-amylase and α-glucosidase by FHDHA, FHDHA1 and plumieride, suggesting that these enzymes slow glucose absorption.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge