English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biomolecular Structure and Dynamics 2020-Jun

Computational investigation on Andrographis paniculata phytochemicals to evaluate their potency against SARS-CoV-2 in comparison to known antiviral compounds in drug trials

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Natarajan Murugan
Chitra Pandian
Jeyaraman Jeyakanthan

Keywords

Abstract

The outbreak due to SARS-CoV-2 (or Covid-19) is spreading alarmingly and number of deaths due to infection is aggressively increasing every day. Due to the rapid human to human transmission of Covid-19, we are in need to find a potent drug at the earliest by ruling-out the traditional time-consuming approach of drug development. This is only possible if we use reliable computational approaches for screening compounds from chemical space or by drug repurposing or by finding the phytochemicals and nutraceuticals from plants as they can be immediately used without the need for carrying out drug-trials to test safety and efficacy. A number of plant products were routinely suggested as drugs in traditional Indian and Chinese medicine. Here using molecular docking approach, and combined molecular dynamics and MM-GBSA based free energy calculations approach, we study the potency of the four selected phytochemicals namely andrographolide (AGP1), 14-deoxy 11,12-didehydro andrographolide (AGP2), neoandrographolide (AGP3) and 14-deoxy andrographolide (AGP4) from A. paniculata plant against the four key targets including three non-structural proteins (3 L main protease (3CLpro), Papain-like proteinase (PLpro) and RNA-directed RNA polymerase (RdRp)) and a structural protein (spike protein (S)) of the virus which are responsible for replication, transcription and host cell recognition. The therapeutic potential of the selected phytochemicals against Covid-19 were also evaluated in comparison with a few commercially available drugs. The binding free energy data suggest that AGP3 could be used as a cost-effective drug-analog for treating covid-19 infection in developing countries.Communicated by Ramaswamy H. Sarma.

Keywords: Andrographis paniculata; Covid-19; RNA-directed RNA polymerase; SARS-CoV-2; andrographolide; neoandrographolide; spike protein.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge